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Failure is simply the opportunity to begin again,  
this time more intelligently. 
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ABSTRACT 

Chronic Obstructive Pulmonary Disease (COPD), a growing health concern, is the 

fourth leading cause of death in the United States. While people habituated to smoking 

constitute the highest COPD susceptible population, people exposed to air pollution or 

other lung irritants also form a major group of potential COPD patients. COPD is a 

progressive disease that is characterized by the combination of chronic bronchitis, small 

airway obstruction, and emphysema that causes an overall decrease in the lung elasticity 

affecting the lung tissue. The current gold standard method to diagnose COPD is by 

pulmonary function tests (PFT) which measures the extent of COPD based on the lung 

volumes and is further classified into five severity stages. PFT measurements are 

insensitive to early stages of COPD and also its lack of reproducibility makes it hard to 

rely on, in assessing the disease progression. Alternatively, Pulmonary CT scans are 

considered as a major diagnostic tool in analyzing the COPD and CT measures are also 

closely related to the pathological extent of the disease. Quantification of COPD using 

features derived from CT images has been proven effective. The most common features 

are density based and texture based. We propose a new set of features called lung 

biomechanical features which capture the regional lung tissue deformation patterns 

during the respiratory cycle. We have tested these features on 75 COPD subjects and 15 

normal subjects. We have done classification of COPD/Non COPD on the dataset using 

the three feature sets and also performed the classification all these subjects to their 

corresponding severity stage. It is shown that the lung biomechanical features were also 

able to classify COPD subjects with a good AUC. It is also shown that, by combining the 

best features from each feature set, there is an improvement in the classifier performance. 

Multiple regression analysis is performed to find the correlation between the CT derived 

features and PFT measurements. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

 

 

Chronic Obstructive Pulmonary Disease (COPD), a growing health concern, is the 

fourth leading cause of death in the United States
1, 2

. While people habituated to smoking 

constitute the highest COPD susceptible population, people exposed to air pollution or 

other lung irritants also form a major group of potential COPD patients. COPD is a 

progressive disease that is characterized by the combination of chronic bronchitis, small 

airway obstruction, and emphysema that causes an overall decrease in the lung elasticity 

affecting the lung tissue. The current gold standard method to diagnose COPD is by 

pulmonary function tests (PFT) which measures the extent of COPD based on the lung 

volumes. The insensitivity of PFT to the early stages of the disease, its evaluation based 

on global lung function and also its lack of reproducibility makes it hard to rely on, in 

assessing the disease progression 
3, 4

. These tests are also labor intensive and time 

consuming. Alternatively, Pulmonary CT scans are considered as a major diagnostic tool 

in analyzing COPD and CT measures are also closely related to the pathological extent of 

the disease 
5, 6

. CT imaging of the lungs provides important information about airflow 

patterns in the COPD subjects. Densitometry analysis of CT images has been 

successfully used to distinguish COPD subjects from normal
7-11

. Recently, textural 

patterns on the CT images showed significant difference in the disease progression and 

are proved useful in detecting COPD subjects
12-16

. Quantification of COPD based on the 

features derived from CT images has been recognized effective and these features are 

correlated well with PFT measurements
13-15

. There are several other features of CT that 

are closely related to the lung function
17-20

. By the use of machine learning, the capability 

of various features in diagnosing and staging COPD can be evaluated and the best 
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combination of features can be extracted. These features may result in better diagnosis of 

COPD and the evaluation of its progression at different stages. 

1.2. The State of the Art 

 

Several methods are proposed to diagnose COPD using CT images. Gould et al. 

proposed a lowest fifth percentile method based on CT attenuation values to calculate the 

pathological extent of emphysema
17-22

. Later, Muller et al. proposed ‘Density Mask’ 

method based on the relative area of low attenuation values in CT to detect emphysema. 

This method calculates the percentage of voxels below a certain threshold which gives 

the extent of emphysema. A threshold range of -910HU to -960HU was shown capable of 

providing the emphysema extent 
8
. Genevois et al. compared density measurements with 

the pathological extent of emphysema and found significant correlations with the extent 

of emphysema at a threshold of -950HU
7
. Shaker et al. and other groups used these 

density based measurements and showed lowest 15th percentile of the frequency 

distribution provided the estimate of emphysema in alpha1 antitrypsin-deficient 

individuals
23, 24

 . In addition to the emphysema scores from CT, Newman et al. calculated 

the extent of air trapping in asthma patients using expiratory CT images. This method 

calculates the percentage of low attenuation values in expiratory CT below a threshold of 

-900HU 
11

. Matsuoka et al. calculated the air trapping measure in COPD subjects and 

found the decreased attenuation values below -860HU in the expiratory CT is 

significantly correlated with the airway dysfunction regardless of emphysema
25

. The ratio 

of mean lung density on expiration and inspiration is also used to estimate air trapping. 

Lee et al. evaluated the correlation between the emphysema, air trapping scores of COPD 

subjects with the clinical parameters. They have shown that the CT parameters are well 

correlated with the PFT, body mass index scores 
26

. Murphy et al. performed the 

classification at each severity stage of COPD using 3D registration of inspiration and 
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expiration images. Registration based features are shown working better than the normal 

density based features of CT 
27

. Lederman et al. compared the density based metrics with 

the lung function and showed the higher density lung regions also provide clinical 

information regarding the COPD severity 
28

. Although the density based measurements 

are proved to be effective in detecting emphysema and airway obstruction, textural 

patterns on CT images of COPD patients are also found to be valuable. Uppaluri et al. 

proposed the adaptive multiple feature method (AMFM) to classify emphysema using 

textural patterns on pulmonary CT images. First order and second order statistical 

features of texture patterns were used to classify emphysematous lung tissue 
15

. This 

method showed good accuracy in classifying emphysema subjects and normal subjects. 

Sorensen et al. also used textural features in classifying moderate to severe COPD 

subjects from normal subjects. Disease probability given to the image by fusing 

individual probabilities evaluated at local region of interests (ROI) in the images. The 

ROI classification is based on k nearest neighbor classifier with features from a multi 

scale Gaussian filter bank. All the ROI probabilities are combined to give a single 

probability for the image using a posterior probability estimate
13, 14

. Various authors used 

the texture and density based approach to diagnose various lung pathologies and have 

shown these approaches are compared well with the structural changes happening in the 

lungs as the disease progresses 
12, 29, 30

. The most common textural features are gray level 

co-occurrence matrices (GLCM), run length matrices (RLM), Gaussian filter bank 

features. Recently, Murphy et al. used regional ventilation measures from the registration 

of inspiration and expiration images as a new feature set to classify COPD subjects to 

their corresponding severity stage 
18

. Also, features based on tracheal changes in the CT 

images are used to classify COPD subjects 
20

. Most of these features classified COPD 

subjects with good accuracy and correlated well with PFT measurements. 
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1.3. New Approaches 

 

We performed the classification of COPD using a new set of lung biomechanical 

features derived by the registration of inspiratory and expiratory CT in addition to the 

current texture based and density based features. The new set of features is calculated 

based on the estimates of regional lung tissue expansion and contraction and are 

compared well with the function of lungs
17, 19, 31

. These features capture the mechanical 

changes that occur in the lung from inspiration to expiration. As a part of five 

classification experiments, we have tested the effectiveness of these features in 

distinguishing normal subjects from the severely diseased in comparison with the texture 

and density based features. We have also performed classification of normal versus 

COPD subjects at all the stages (mild to very severe) using density, texture and lung 

biomechanical features. As the final step of classification, we have classified COPD 

subjects in to their corresponding severity stage. For all these experiments, we have 

added an extra feature set which is the combination of best features from density, texture 

and lung biomechanical feature sets. We have done this analysis at whole lung level and 

lobar level. We compared our results to the PFT measurements. 

In the following chapters of this thesis, we give background information about 

COPD and quantitative analysis of COPD using pulmonary CT in chapter 2. We 

described our dataset, preprocessing techniques and the methodology of calculating the 

features in chapter 3. Also in chapter 3, we described the feature selection, classification 

and implementation details. In chapter 4, we showed our classification results in at whole 

lung level and lobar level. In chapter 5, we discussed the significance of this research and 

the future work. 
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CHAPTER 2 

BACKGROUND 

2.1. CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) 

2.1.1. Definition and Overview 

 

COPD is an airflow obstruction disease which is caused by emphysema and/or 

chronic bronchitis. It narrows the airways, leading to the progressive reduction of the 

airflow in and out of the lungs. COPD is considered as a major public health problem, as 

it is the fourth leading cause of death in United States 
1, 2

. Smoking is the major risk 

factor that causes COPD. According to Global Initiative for the Chronic Obstructive 

Lung Disease (GOLD) guidelines, a general definition of COPD is 

 

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable 

disease with some significant extra pulmonary effects that may contribute to the severity 

in individual patients. Its pulmonary component is characterized by airflow limitation that 

is not fully reversible. The airflow limitation is usually progressive and associated with 

an abnormal inflammatory response of the lung to noxious particles or gases.
1, 2

 

 

The interrelationship between emphysema and bronchitis makes it harder to find a 

single factor that is contributing towards the disease progression. Emphysema causes the 

destruction of the lung tissue that is necessary to support the physical shape and function 

of the lungs. It destroys the lung tissue which leads to dyspnea. Emphysema is classified 

into three subtypes; centrilobular, panlobular, and paraseptal emphysema. In 

centrilobular, the respiratory bronchiole is affected and occurs more commonly in the 

upper lobes. Panlobular emphysema causes the expansion of entire respiratory acinus and 

occurs in lower lobes. Paraseptal occurs at lung peripheral structures. Chronic bronchitis 

is the inflammation of airways. It causes cough with sputum production. There will be an 

increased mucus accumulation in the airways which leads to the narrowing of the airways 

and causing a cough. According to the Global Initiative for the Chronic Obstructive Lung 
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Disease (GOLD) guidelines, the prevalence of COPD is now almost equal in men and 

women and is directly related to smoking. Tobacco smoking is the important risk factor 

of COPD. The major percentage of COPD patients are smokers or have smoked. 

Smoking causes the alterations of surfactant quality and also hyperplasia, hypertrophy of 

mucus secreting glands. The people who have a prolonged exposure to the outdoor 

environment like dust, fumes, and polluted gas surroundings are more susceptible to 

COPD  than the general population
1
. In these cases, air flow obstruction is caused by 

hyper secretion of mucus with the pollutants reaching terminal bronchi and alveoli. Also, 

the deficiency of alpha1 antitrypsin is a significant genetic factor that causes COPD
11, 24

. 

All these risk factors illustrate that the development of the disease is also related to 

genetic factors and environmental exposures. It is also shown that a COPD subject may 

undergo cardiac failure due to airflow obstruction and hyperinflation caused by COPD. 

Some of the comorbidities associated with COPD are heart diseases, diabetes, 

osteoporosis, and skeletal muscle dysfunction and lung cancer
1
. 

2.1.2. Diagnosis 

 

Evaluation for COPD is recommended for any patient who has dyspnea, chronic cough 

and/or exposed to any of the risk factors for the disease. Dyspnea is a cardinal symptom 

of the disease which increases the effort to breathe or causes gasping and it worsens over 

the disease progression. Chronic cough and sputum production is also an important 

symptom while diagnosing and it is intermittent at the early stages but worsens at the 

severe stage of COPD. 



www.manaraa.com

7 
 

 

7
 

 

Figure 1: Emphysema and Chronic Bronchitis in COPD, Adapted from 
32

. 
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Additional symptoms are fatigue, weight loss which can be the signs of other 

diseases associated with the COPD. Depression and anxiety are also common at the 

severe stages of COPD. COPD assessment is done by performing spirometry or 

Pulmonary Function Test (PFT) which is a current gold standard diagnosis of COPD. 

PFT measures the lung volumes at different stages of breathing by asking the subject to 

breathe into a mouthpiece connected to a spirometer. COPD is diagnosed based on two 

lung volumes; the maximum volume of air that can be forcibly blown out after full 

inspiration, called as forced vital capacity (FVC), and the maximum volume of air that 

one can blow out in the first second of the FVC process called as forced expiratory 

volume at the first second of the expiration (FEV1). If FEV1/FVC is less than 0.7, then 

the subject is considered as a potential COPD subject suffering from airflow obstruction.  

Normalization of FEV1 according to expected value based on age, height, sex is called 

FEV1% predicted of that specific patient. This measure is used to estimate the severity of 

the disease. 

According to the Global Initiative for the Chronic Obstructive Lung Disease 

(GOLD) guidelines, COPD is classified in to five severity stages as explained in Table 1. 

GOLD0 is an asymptotic stage of the disease where subjects are likely to get COPD. 

GOLD1 is a mild stage where airflow limitation is mild and usually the patient is 

unaware that the lung function is not normal. GOLD2 is a moderate stage of COPD at 

which patients usually feel shortness of breath and typically seek medical attention. 

GOLD3 is a severe stage of the disease where the patient experiences greater shortness of 

breath, fatigue and reduced exercise capacity. GOLD4 is a very severe stage of COPD 

characterized by severe air flow limitation and the chronic respiratory failure. Patient’s 

quality of life is severely worsens at this stage. 
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Table 1: COPD severity stages according to GOLD guidelines. 

There are other validated questionnaires to estimate the impact of the disease on 

the daily life activities of a patient. Modified British Medical Research Council (mMRC) 

or COPD Assessment Test (CAT) is the common measure. It is used to assess the health 

impairment caused by COPD on patient's daily life activities. It is an 8-item health status 

questionnaire which has the score ranging from 0-40. St. George’s Respiratory 

Questionnaire (SGRQ) is another important questionnaire which is designed to measure 

health impairment in patients with asthma and COPD. The first section of SGRQ 

evaluates symptoms like frequency of cough, sputum production and breathlessness. The 

second section is of two components: activity and impact scores. Activity section 

evaluates the activities that cause breathlessness and the impacts section covers the 

impact of the diseases on several day to day activities. SGRQ score has been shown to 

correlate well with established measures of symptom level, disease activity and disability. 

6-minute walk test (6MWT) is also a useful measure of functional capacity, which 

evaluates the exercise capacity of moderate to high severity stages of the disease. The 

American Thoracic Society provided guidelines to perform the test and to measure the 

response for pulmonary and cardiac diseases. Modified medical research council’s 

(MMRC) dyspnea scale including body mass index, airflow obstruction and exercise 

COPD CLASS PFT Measurement 

GOLD0 (Asymptotic) FEV1/FVC > 0.7 

GOLD1 (Mild) FEV1/FVC < 0.7 ; FEV1%pred > 80% 

GOLD2 (Moderate) FEV1/FVC < 0.7 ; 50% < FEV1%pred < 80% 

GOLD3 (Severe) FEV1/FVC < 0.7 ; 30% < FEV1%pred < 50% 

GOLD4 (Very Severe) FEV1/FVC < 0.7 ; FEV1%pred < 30% 
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capacity from 6MWT can be used to estimate the bode index 
1, 2

. Bode index is used to 

calculate the life expectancy of a COPD patient. All these measures are used to diagnose 

COPD and to evaluate its progression at each severity stage. 

2.2. Quantification of COPD Using Pulmonary CT 

  

Pulmonary function test measurements do not provide regional assessment of the 

disease in the lung. It is solely based on global lung volume measurements. In contrast, 

computed tomography (CT) allows regional assessment of lung function and has been 

shown pathologically related to chronic bronchitis and emphysema components of 

COPD
5, 6

. The quantification of emphysema in CT is based on low attenuation areas in 

CT images of the lung, i.e. regions of parenchymal destruction. Gould et al. measured the 

emphysema extent using CT attenuation values and fifth percentile values of CT 

attenuation histogram. In 1988, Muller et al. used a commercially available GE CT 

software ‘Density Mask’ and found high correlations of emphysema with attenuation 

values lower than -910HU. Later, Genevois et al. applied various thresholds ranging from 

-910HU to -970HU to measure emphysema extent. They showed that the attenuation 

values lower than threshold -950HU on high resolution CT images obtained at full 

inspiration as the best emphysema measure. Expiratory CT is shown to be useful for 

airway obstruction and air trapping measures more than it does emphysema 
9, 11

. 

Recently, Murphy et al used the percentage of voxels below -850HU from the expiratory 

CT and found high correlations with pulmonary function measurements 
18

.  

Texture analysis of CT images is another approach for the quantification of 

COPD
13-16, 33, 34

. Uppaluri et al. developed adaptive multiple feature method (AMFM) 

based on textural patterns of CT images obtained at full inspiration 
15

. They have used 

two dimensional sections of the whole lung to capture grey level differences on the 

images. First order statistical features: mean, median, skewness, kurtosis and variance 
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were computed for each region in the lung. Also, the second order statistics: entropy, 

contrast and angular second moment were computed. They have shown that these textural 

features were sensitive to spatial relationships between pixels in a region allowing them 

to discriminate emphysema regions from normal regions in the lung. They compared 

AMFM with mean lung density and fifth percentile methods. AMFM achieved 100% 

accuracy in classifying normal from emphysema regions. However, AMFM method has 

no significant correlations with the pulmonary function test measurements
15, 35

. The two 

dimensional AMFM is later extended to a three dimensional texture based approach to 

differentiate normal lung from subtle lung pathologies by Xu et al.
16, 34

. They have 

computed 24 features for each region and used Bayesian classifier for discrimination. 

They have shown that the 3D AMFM was able to find the textural differences on the 

normal appearing lung from the population of nonsmokers and normal smokers.  3D 

AMFM is shown to be more sensitive and specific than the earlier 2D AMFM in 

discriminating smoking related lung pathologies. Gaussian filtering of CT images at 

multiple scales is another approach followed by Sorensen et al. to quantify COPD 
13

. An 

automatic data driven approach for texture based quantitative analysis was proposed. 

Rotation invariant local binary patterns and a rotation invariant filter bank of Gaussian 

derivatives were computed for local regions of interests (ROI) in the lungs. A quantitative 

measure of COPD is obtained by fusing ROI probabilities, computed using a k nearest 

neighbor (kNN) classifier. The proposed measure achieved an AUC of 0.713 in 

classifying subjects with and without COPD, whereas the best density based emphysema 

measure achieved an AUC of 0.596. They have also shown better correlations with lung 

function and the robustness to inspiration level changes.  

Although density based and texture based features were successful in 

quantification of COPD, these features were calculated from the inspiration and 

expiration scan alone.  Murphy et al. used features from the transformed image obtained 

by the registration of inspiratory and expiratory CT to classify COPD subjects 
27

. 
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Average ventilation is computed through the comparison of HU value changes between 

inspiratory and expiratory CT scans using automatic non rigid registration. They have 

performed a classification of 110 COPD subjects with a 2-class KNN classifier 

(COPD/Non-COPD) and a 5-class classifier (COPD 1-4/Non-COPD). The registration 

based features achieved an AUC of 0.92 in the two class classification and 66% accuracy 

in the five class classification. Recently, the same group computed eleven different 

ventilation measurements based on the registration of inspiratory and expiratory CT 
18

. 

These ventilation measurements were calculated from whole lung and lobar regions. 

They have achieved a 67% accuracy using registration based features in classifying 216 

subject dataset to their corresponding GOLD severity. These registration based 

ventilation measurements demonstrated better correlations with pulmonary function test 

measures
18

.  

In this study, we proposed a new feature set called lung biomechanical feature set, 

consisting of regional lung tissue expansion and contraction estimates. These features are 

computed from displacement field information provided by the registration of inspiratory 

and expiratory CT scans. These features capture the mechanical changes during the lung 

function
17, 19, 31

. We have performed five classification experiments to test the 

effectiveness of these features in recognizing COPD and its level of severity. We have 

compared our results with the existing density based and texture based features. We 

combined our proposed features with the density and textural features to form a new 

feature set and evaluated its performance in COPD classification experiments.  
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Dataset 

 

All the subjects in this study are selected from the Iowa cohort of the nationwide 

COPDGene database. All the data were gathered under a protocol approved by our 

Institutional Review Board. All the images were acquired with the subjects in the head 

first supine orientation on a Siemens sensation 64 multi-detector (MDCT) scanner 

(Siemens Medical Solutions, Enlargen, Germany). The scans followed an imaging 

protocol with the x-ray tube current 200 mAs, a tube voltage 120 kV, slice thickness of 

0.75 mm, and a field of view of 500 mm. All the CT scans were acquired during breath-

holds near function residual capacity (FRC)/full expiration and total lung capacity 

(TLC)/full inspiration in the same scanning session. Each scan was acquired at a 

reconstruction matrix of 512 by 512 with pixel spacing of (1 mm, 1 mm) and kernel 

B30f. 

 

 

 

Figure 2:   Graph showing the COPD subject information according to GOLD severity 
and PFT measurements. 
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We have selected a total of 90 subjects to use in this study with 15 subjects per 

each severity stage including 15 nonsmoking control subjects with normal PFT. The 

severity range of subjects used in this study according to the PFT measurements is shown 

in figure 2. The demographic information and pulmonary function measures of the data 

are shown in table 2. The complete demographic information per subject is listed in 

appendix.  

 

 

 

Parameters Non-COPD         COPD 

Age 67.4 (6.79) 67.6 (5.87) 

Gender (M/F)  15/15 31/29 

Height (cm) 168.5 (8.66) 168.2 (9.02) 

Weight (kg) 81 (11.8) 79.9 (21.3) 

BMI 28.5 (4.08) 28.01 (6.26) 

Pack years - 39.05 (12.21) 

FEV1% predicted 0.9 (0.13) 0.55 (0.27) 

FEV1/FVC 0.7 (0.05) 0.46 (0.15) 

GOLD STAGE (N/0/1/2/3/4) 15/15/0/0/0/0 0/0/15/15/15/15 

All the numbers are mean values with standard deviation in parenthesis except GOLD 

stage and Gender 

Table 2: Demographic information and PFT measures of the dataset used.  

 



www.manaraa.com

15 
 

 

1
5
 

3.2. Overview of Methodology – Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Workflow 
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The flowchart in figure 3, explains the workflow implemented in this study. The 

detailed description of each step is given in following sections of the chapter. 

3.3. Image Preprocessing and Lung Segmentation 

 

All volumetric CT data were converted from DICOM format and stored in 16-bit 

Analyze (Mayo Clinic, Rochester, MN) format 
36

. Processing of CT data requires 

memory intensive tasks. Resampling of the data is done to maintain consistent spacing 

and resolution in all the images. To produce binary lung masks, region growing 

segmentation is carried out to segment the lungs. Region growing segmentation is a 

region based segmentation procedure that segments the given image into regions based 

on the discontinuities in the gray level and by the selection of initial seed points in the 

region. The segmentation is carried out on Analyze image processing software. 

 

3.4. Image Registration 

3.4.1. Basics of Image Registration 

 

In order to do the mechanical analysis of lung, we have to capture the deformation 

changes happening from inspiration to the expiration image. This can be done by 

mapping of one image to the other in a single coordinate system. Image registration, a 

spatial transform mapping of one image into another as shown in the figure 4, is the 

solution for this problem. Many image registration algorithms have been proposed and 

various features were used to define the correspondences between two images
37, 38

. The 

basic components of the registration framework: two input images, a transform, a cost 

function, an interpolator, and an optimizer. The two inputs to the registration process are 

the moving or template image and fixed or target image. The transform used in the 

registration defines the deformational changes between the two images. The interpolator 
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is used to evaluate intensities in the moving image. The cost function contains a 

similarity metric measuring how well the fixed target image is matched by the 

transformed moving template image. Optimizer in the registration process optimizes the 

quantitative criterion formed by the similarity metric over the search space defined by the 

parameters of the transform. Registration is mainly dependent on the cost function. The 

spatial locations of corresponding voxels in a sequence of pulmonary scans are 

determined through the registration.  

 

 

Figure 4 :  Image registration is the task of spatial transformation mapping on one image 
to another. This figure is the schematic representation of this concept with a 
point p in the left image is mapped to a point q in the right image using 
transformation T. Adapted from

39
 

 

Figure 5:  The basic components of the registration framework are two input images, a 
transform, a cost function, an interpolator, and an optimizer. Adapted from 

39
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3.4.2. Registration Process 

 

The inspiratory and expiratory CT images are registered for each subject since 

this pair of images shows large volume change and tissue deformation patterns of the 

lungs. We have used a lung mass preserving registration method to capture these 

differences between the images. This method uses a similarity metric called the sum of 

squared tissue volume difference (SSTVD), which estimates the local tissue and air 

fraction by minimizing local tissue mass difference 
40, 41

. This method has been shown 

effective in lung image registration protocols
19, 42

. The tissue volume V in a voxel at 

position X can be estimated as 

     ( )   ( )
  ( )       

               
  ( )  ( ( ))                                           (   ) 

where  (X) is the volume of voxel x [45]. Similarly, the air volume    in a voxel can be 

estimated as  

           ( )   ( )
           ( )

               
  ( )  ( ( ))                                    (   ) 

 

Where the sum of  ( ( )) and  ( ( )) is equal to 1 and              and       = 

-1000HU. Then  

     ( )   
   ( )

    
           ( )   

  ( )      

    
                                        (   ) 
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Let   ( ) and    ( ) be the intensity values,   ( ) and    ( ) be the voxel volumes, and  

  ( ) and    ( ) be the tissue volume in the voxel of images     and     respectively. 

Then the SSTVD is defined as 
19, 42

 

 

        ∫ [  ( )     ( ( ))]
  

 
                               

                ∫ [  ( ) (  ( ))     ( ( ) (  ( ( ))))]
 

 

 
                             (   )  

 

The Jacobian of a transformation J (h) estimates the local volume changes resulted from 

mapping an image through the deformation. Thus, the tissue volumes in image    and     

are related by 

 

                 ( ( ))     ( )   ( ( )).                                                                  (3.5) 

 

The registration process provides the displacement field information corresponding to the 

tissue deformation patterns in the lung from inspiration to expiration.  

3.5. Feature Calculation 

 

In this study, we have calculated three sets of features from the CT images. The 

three sets are: density based feature set which explains emphysema and air trapping 

extent, textural feature set which captures textural patterns based on multi scale 

derivatives of Gaussian filter bank, and the lung biomechanical feature set which captures 

the mechanical changes happening in the lung from the registration process. Density 

based feature set has only two features which are the direct estimates of emphysema and 

air trapping. In the texture based feature set, three filters were calculated at three different 

standard deviation values giving 9 filtered versions for each expiration image in the 

dataset. We have calculated five first order statistical features: mean, median, skewness, 
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kurtosis and standard deviation for each of these 9 filtered versions. Therefore, a total of 

45 features formed a texture based feature set. Similarly, in the lung biomechanical 

feature set, 15 features were computed based on five statistical measures of three feature 

images. The summary of 62 features from the three feature sets is shown in table 3 and 

the feature calculation is described in the subsequent sections. 

 

 

 

Feature Set      Feature Image Features Calculated Number 
of  
Features 

Density based 1. Inspiration 

 

 

 

2. Expiration 

Emphysema 

Percentage of voxels 
below -950HU 

 

Air Trapping 

Percentage of voxels 
below -856HU 

2 

Textural 

(filtering at three 
different 
scales/standard 
deviations) 

1. Base gaussian 

 

2. Gradient magnitude 
of gaussian 

 

3. Laplacian of the 
gaussian 

mean, median, 
skewness, kurtosis,  and 
standard deviation 

45 

Lung 
Biomechanical 

1. Jacobian 

 

2. Strain 

 

3. Deformation Index 
(ADI) 

mean, median, 
skewness, kurtosis,  and 
standard deviation 

15 

Table 3: Complete feature calculation information 
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3.5.1. Density Based Feature Set 

 

Density based feature set consists of measure for the extent of emphysema and air 

trapping in a COPD subject. The densitometry measures are computed from the entire 

lung fields and also from the lobes.  These measures correspond to the amount of voxels 

below a given HU threshold relative to voxels in the whole lung.  Emphysema is 

calculated from the inspiration image and a threshold of -950HU is used 
8
. Similarly, air 

trapping extent is computed from the expiration image and a threshold of -856HU is 

used
9-11, 43

. These thresholds have been proven effective in quantifying the extent of 

emphysema and air trapping in COPD subjects. 

3.5.2. Texture Based Feature Set 

 

In order to capture the textural patterns, a set of 45 features that includes 3 local 

image descriptors computed at 3 different scales, are used. The detailed information of 

the filters is shown in table 4. The local image descriptors are based on the gaussian 

function and its rotationally invariant derivatives. The three different scales (standard 

deviation) represents the amount of smoothing for the gaussian kernel.  

The following is the detailed descripiton of the filter bank,  

 

1. Convolution with Gaussian: 

The feature images are computed by convolving it with the gaussian 

kernel at 3 different scales. This filtering technique blurs the images and 

reduces the noise. The gaussian function uses the following equation for 

the transformation.  
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          (     )   
 

    
   (  

| |  | |   | | 

   
)              

 

 

 

Image Descriptor Feature Image Equation 

Smoothing Convolution with Gaussian  (L = I ∗G) 

Rotationally invariant 

edge descriptor 

Gradient magnitude L = sqrt( Lx
2 

+ Ly
2
 + Lz

2 
) 

Rotationally invariant  

edge descriptor 

Laplacian of the Gaussian (𝜆1 + 𝜆2 + 𝜆3) 

Table 4: Gaussian filter bank calculated at 3 different scales used to form texture based 
feature set with the corresponding equations assuming λ1 ≥ λ2 ≥ λ3 

 

2. Gradient Magnitude of the Gaussian 

                        This filter is used to determine the object contours and seperations, i.e.             

for edge detection in the images. It is derived by computing partial 

derivatives of the image, 

                   √( 
  

  
)   ( 

  

  
)   ( 

  

  
)  
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3. Laplacian of the Gaussian 

Laplacian operator computes the second spatial derivative of an image. It captures 

the regions of rapid intensity changes and is used in edge detection. To get the 

horizontal, vertical and depth information of the edges, we take the second 

derivative in x, y and z directions. Thus, the laplacian of the image is given by  

          (     )   
   

   
  

   

   
  

   

   
 

 

These three filters were calculated at three different standard deviation values 

(1.2, 2.4 and 4.8mm) giving 9 filtered versions for each expiration image in the dataset. 

We have calculated five first order statistical features: mean, median, skewness, kurtosis 

and standard deviation for nine filtered versions of each image. Therefore, a total of 45 

features were computed to form a texture based feature set. 

3.5.3. Lung Biomechanical Feature Set 

 

This feature set is comprised of features which captures the lung function by non-

rigid image registration of a pair of scans at different inflation levels. Mechanical analysis 

on a regional level is done by finding out the local tissue deformation pattern from the 

correspondence of each voxel between inspiration and expiration image. Three measures 

are calculated from this analysis: 

 

  Jacobian 

 Strain information and  

 Anisotropic Deformation Index (ADI) 
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Jacobian 

This feature measures the local volume change under deformation from the 

inspiration to expiration registration procedure. The Jacobian determinant is a 

measurement to estimate the point wise volume expansion and contraction during the 

deformation
19, 41

.  In a three dimensional space, Let  ( )   [  ( )   ( )   ( )]  be 

the vector transformation and  ( )   [  ( )   ( )   ( )]  represents the deformation 

fields. The relationship between  ( ) and  ( ) is shown as  ( )     ( ). The 

Jacobian of transformation J (h(x)) at    (        )
  is defined as 

 ( ( ))  

|

|
   

   ( )

   

   ( )

   

   ( )

   

   ( )

   
   

   ( )

   

   ( )

   

   ( )

   

   ( )

   
   

   ( )

   

|

|

                            (   ) 

 

The Jacobian at a given point gives important information about the 

transformation h near that point 
44, 45

. If the Jacobian value is zero at x, then the 

transformation h is not invertible. If the Jacobian value is negative, then transformation 

reverses orientation. A positive jacobian preserves the orientation. Using a Lagrangian 

reference frame, the indications of Jacobian value are,  

 

J > 0, preserve orientation    J > 1, local expansion 

                                              J = 1, no deformation 

                                              0 < J < 1, local contraction 

J = 0, non-injective 

J < 0, reverse orientation 
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Strain Analysis 

Deformation patterns are characterized by the regional distribution of a strain or 

stretch tensor by the displacement fields from the registration process. A displacement 

gradient tensor u can be calculated as the partial differentiation of the displacement 

vector with respect to the material coordinates. 

    
|
|

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

|
|
                                           (3.10) 

By applying strain tensor on the deformation gradient, the distribution of stress in the 

lung can be calculated. Linear strain along           axes are defined as 

      
   

  
 ,     

   

  
     

   

  
.      (3.11) 

Where   [        ]
  is the 3D displacement field. The concept of the strain is used to 

evaluate how much a given displacement differs locally from a rigid body displacement 

46
. The strain tensors are represented as orthogonal eigenvectors by single value 

decomposition method. The maximum eigenvalue for each tensor is called maximum 

principle strain. Strain analysis gives valuable information about the directionalities in 

local tissue deformation.   

 

Anisotropic Deformation Index (ADI) 

Orientation preference also plays a role in the lung deformation in addition to the 

volume change
47

. Some regions may undergo no volume change with significant 

deformation and vice versa due to the compensation effects of lung elasticity. Anisotropic 

deformation index calculates the ratio of length in the direction of maximal extension to 
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the length in the direction of minimal extension. This index is calculated by decomposing 

the deformation gradient tensor in to stretch and rotational component. 

                 

|

|
   

   ( )

   

   ( )

   

   ( )

   

   ( )

   
   

   ( )

   

   ( )

   

   ( )

   

   ( )

   
   

   ( )

   

|

|

                (    ) 

Where R is the rotational tensor and U is the stretch tensor. 

The Cauchy-green deformation tensor is defined as  

 

                                                                                 (3.13) 

 

To obtain the stretch information from U, Eigen decomposition of C is done. 

After taking the square root of eigenvalues of C, we get the eigenvalues of U which are 

principal stretches. The ratio of maximum eigenvalue over the minimum gives the 

regional stretch information, which represents anisotropic deformation index 
31

. The 

value of ADI is always greater than or equal to one. If the value is close to one, it means 

there is an isotropic expansion and if the value is big, it represents anisotropic 

deformation. 

3.6. Feature Selection  

 

Feature selection plays a major role in building robust classification models by 

selecting a subset of best features. Feature selection algorithms are of two categories: 

feature ranking and subset selection. Feature ranking ranks the given set of features and 

eliminates the low ranked features to form an optimal set of features. Subset selection 

searches for the set of optimal features through various combinations of the given 
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features. The elimination of irrelevant and redundant features improves the performance 

of the classification. It speeds up the run time of the classification and reduces the curse 

of dimensionality. In this study, 62 features were calculated from three different feature 

calculation strategies. The selection of optimal features from each feature set, which can 

define the disease better than the other features, is possible through the feature selection 

process. Linear forward feature selection technique is used in this study to improve the 

classifier performance and also to test the effectiveness of the features in different 

classification experiments. 

 

 

Figure 6:  Linear forward selection algorithm. The first column in figure (a) and (b) 
shows the ranking of attributes represented by different colors. In the second 
column of (a) and (b), the features are arranged according to their rank. In the 
third column, fixed set technique, fig (a), selects the top k features and only 
these k attributes are used for subsequent selection process reducing the 
number of evaluations and eliminating irrelevant features at each step. In the 
third column, Fixed width technique, fig (b), selects the top k features and 
replaces with the next best attribute in the subsequent selection process. It 
maintains a fixed width in all the steps by taking low ranked attributes also 
into account. Adapted from 

48, 49
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Linear forward selection is the modified version of the standard search technique 

known as sequential forward selection 
48, 49

. Sequential forward selection is a hill 

climbing search which adds the feature that gives the best score to the optimal subset at 

each forward step. The search terminates when there is no improvement in the score with 

the remaining features. In this method, there will be a reduction in the number of features 

in each step of the forward search.  The number of evaluations at each step is equal to the 

number of remaining features.  The feature dependent evaluations reduce the run time 

performance of the algorithm and it can be problematic for high dimensional datasets.  In 

the linear forward selection, user will be able to limit the number of features that are 

considered in each step and it significantly reduces the number of evaluations and run 

time 
48

.  

There are two methods used by linear forward selection to limit the number of 

features: Fixed Set and Fixed Width, shown in figure 6. In fixed set, only the given 

features are ranked according to their scores by evaluating each feature individually. 

Only the k best features are selected for the next forward selection step. It discards most 

of irrelevant features and it reduces the number of evaluations drastically by selecting the 

given features to fixed set of size k. The subset of best ranked features increases at each 

forward step and the subset extension decreases with the each step.  In fixed width, 

similar ranking of features is done as the fixed set method. However, at each forward 

step, the next best feature in the initial ranking is added to the subset by ensuring the 

subset with the individually best k features that have not been selected so far. Fixed width 

takes the weaker features into account as the search proceeds and the subset extension 

will be fixed width throughout the search. 
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3.7. Classification (KNN Classifier) 

 

We have performed five classification experiments in this study. In all the 

experiments, we have used the k nearest neighbor learning algorithm 
49, 50

. K nearest 

neighbor algorithm is a non-parametric approach based directly on distances computed 

between training and test data points. It is a supervised pattern classification algorithm. It 

has been shown to work well in the classification of lung tissue
13, 14, 51, 52

. This classifier 

does not require any prior information about the distribution of the data points.  

 

 

Figure 7: KNN classifier example 

 

Group A 

Group B 
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For any given test data point, KNN searches its nearest neighbors formed by the 

training data sets. The classifiers return the selected number of neighbors (k) which are 

closest in the distance to the given test data point. The choice of k is user defined and it 

defines the smoothness of the decision boundary.  The decision is made based on the 

majority vote of its neighbors, with the test data point being assigned to the group most 

common among its nearest neighbors. The running time of KNN grows exponentially 

with n-dimensional space. As an example, in figure 7, there are 15 data points in group A 

(red), 15 in group B (green) and one test data point (blue). KNN computes the Euclidean 

distance to each data point in group A and group B from the test data point. In this 

example, the k value is chosen as 7. It selects 7 nearest neighbors closest to it based on 

the distance calculation. Since there are 4 data points from Group B out of 7 nearest 

neighbors, the given test data point is labeled as group B by the classifier. In this study, 

we have used instance based k nearest neighbor (IBk) learning model in WEKA machine 

learning framework to perform the k nearest neighbor search 
49

. Euclidean distance 

method is followed to compute the distances between nearest neighbors. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

4.1. Feature Calculation Results and Correlations with 

Pulmonary Function Test Measures 

 

A total of 62 features from the CT images were used in this study. These features 

are categorized into three feature sets: Density based (2), Texture based (45) and lung 

biomechanical based (15).  Density based feature set comprises of emphysema (percent 

below -950HU) and air trapping (percent below -856HU) measures.  The emphysema and 

air trapping percentages of all the subjects in this study are shown in figure 8. Texture 

based feature set consists of features calculated from gaussian filtered versions of the 

expiration image at multiple scales. The gradient magnitude of gaussian and laplacian of 

gaussian filtered versions at scales 2.4mm for a nonsmoker subject and a GOLD4 COPD 

subject is shown in figure 9. Lung biomechanical feature set consists of features 

calculated from the registration of inspiration to expiration image. Three regional lung 

tissue estimates are used in this feature set: Jacobian, Strain and ADI. The Jacobian and 

Strain maps of a GOLD0 and a GOLD4 COPD subject are shown in figure 10.   

As an initial step towards the classification of COPD subjects, correlations of CT 

derived features with PFT measures and COPD GOLD stage values were calculated. 

These correlation values provide the information on the relationship between CT derived 

features and the clinical diagnostic measures of the disease. Density based features 

showed good negative correlations, in particular, the air trapping measure (percent below 

-856HU) showed correlation greater than -0.8 with all the three measures. The Jacobian 

measure has the correlation of greater than 0.8 with PFT measures and -0.85 with the 

GOLD stage values. The texture based features also correlated well with coefficients 

ranging from 0.5 to 0.8. The number of features per feature set that showed either a 
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negative or positive correlation of 0.5 or high with the significance level of p<0.05 is 

shown in table 5.  

 

 

 

Figure 8:  Boxplots showing the percentage distribution of emphysema and air trapping 
of all the subjects according to the GOLD stage.  The two whiskers at both 
ends represent high and low values of the data. The box represents 50% of the 
values with 75

th
 percentile as the top value and 25

th
 percentile as the bottom 

value. The division in the middle represents median value (50
th 

percentile) 
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Figure 9:  Axial slices of the original images (first row) with their corresponding gradient 
magnitude of gaussian filtered image (second row) and the laplacian of the 
gaussian image (third row) at 2.4mm standard deviation. First column 
represents nonsmoker subject and second column represents GOLD4 COPD 
subject 
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Figure 10: The Jacobian (second row) and Strain maps (third row) on the sagittal slice of 
the original FRC image (first row). First column represents GOLD0 COPD 
subject and the second column represents GOLD4 COPD subject. 
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    FEATURE SETS                  PFT MEASURES  

 FEV1/FVC FEV1% Predicted GOLD Values 

Density Based (2) 2 2 2 

Texture Based (45) 18
 

15 19 

Lung Biomechanical (15) 10
* 

10
* 

10
* 

 (*) values are statistically significant with p < 0.0001 

Table 5: Number of features per feature set with a correlation coefficient of either (-0.5 to 
-1) or (0.5 to 1) with clinical PFT measures showing a statistical significance 
p < 0.05 

 

 

The two density based features and ten lung biomechanical features showed good 

correlations with the three clinical measures. All the lung biomechanical features are 

found to be statistical significant with p < 0.0001 significance level. Out of 45 features, a 

good number of texture based features also correlated well with the given measures. 

These correlations prove a definite relationship between the calculated features and the 

clinical diagnostic measures. 

 

4.2. Classification Experiments 

 

We have performed five classification experiments to classify COPD subjects 

from normal subjects and also to assess the disease progression at various stages. Three 

experiments are based on the features calculated from the whole lung and the remaining 

two experiments are based on the features from the lobes of a lung. Whole lung level 

experiments are performed to classify COPD subjects from the normal subjects and also 
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to classify COPD subjects to their corresponding severity stage. Lobar level experiments 

are used for regional level assessment of the disease in the lungs. The five experiments 

are as follows:  

 

1. Severe COPD vs. Non COPD (Whole lung) 

2. Mild to severe COPD vs. Non COPD (Whole lung) 

3. Mild to severe COPD vs. Non COPD (Lobar level) 

4. GOLD category classification (Whole lung) 

5. GOLD category classification (Lobar level) 

 

In addition to the three feature sets: density, texture and lung biomechanical, a 

new feature set is formed which is the combination of best features from each of the three 

feature sets.  The fourth feature set is referred as ALL in the classification experiments. 

The best subset of features is selected by linear forward feature selection approach.  

Nearest neighbor algorithm is used for the classification and the optimal k value is 

selected by the cross validation technique. The dataset is divided in to test and training 

data using leave one out cross validation technique. In leave one out cross validation, one 

subject from the data set is used as a test data every time and the remaining subjects as 

the training data. The process is repeated such that every subject in the data is used as a 

test data for at least once. 

 To estimate the classifier performance in each experiment, the area under the 

receiver operator characteristic curve (ROC) measurement is used, often called AUC 

measure. AUC provides a single measure showing the probability that a classifier will 

rank a randomly chosen positive instance higher than a randomly chosen negative one. 

AUC value range from 0 to 1 with 0 being worse and 1 being the perfect classification. In 

addition to the AUC measure, a ROC curve estimating the performance of feature sets for 

each class label in the classification is shown. Multiple regression analysis is done to find 
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the correlation between the optimal features selected in the classification and PFT 

measurements (FEV1% predicted and FEV1/FVC). The adjusted R squared correlation 

coefficient, is reported from the regression analysis. Adjusted R squared coefficient uses 

the variances instead of variations which takes the sample size and number of predictor 

variables into consideration. The results of the experiments are shown in the order of 

materials and methods used for the experiment, ROC graphs for each class label in the 

classification, area under the curve (AUC) results of the classification with correlations 

between the PFT parameters and a table showing optimal features selected from each 

feature set. 

4.2.1. Severe COPD vs. Non COPD (Whole Lung)  

 

The initial experiment is designed to estimate the effectiveness of the proposed 

lung biomechanical feature set and the combination feature set (ALL) in distinguishing 

severe COPD and non COPD subjects. The results are compared with the density based 

and texture based features. The materials and methods followed in this experiment are 

shown in table 6. Two groups of data are considered for this experiment: The non-smoker 

subjects are considered as healthy cases and subjects from GOLD3, GOLD4 severity 

stage are considered as the diseased cases. Classification is done on 45 subjects with 15 

nonsmokers and 30 severe GOLD stage subjects as explained in table 6.  

All the four feature sets achieved almost 100% classification accuracy with an 

AUC of 0.99 in this experiment, as shown in table 7. Correlation between the optimal 

features from the feature sets and PFT parameters is shown in table 7. Density based and 

texture based features showed excellent correlations with FEV1/FVC when compared to 

the correlations with FEV1% predicted. The proposed lung biomechanical features 

showed correlations greater than 0.85 with both the PFT measures. When the best 

features from each feature set combined together in ALL, there is a significant 
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improvement in the correlations by maintaining the same classification accuracy.  The 

optimal features selected for the classification are shown in table 8. 

 

 

 

Classification  Non COPD vs. Severe COPD classification 

Dataset Non COPD, GOLD3, GOLD4 (15 subjects/case) 

Total number of subjects 45 (15 Non COPD vs. 30 Diseased) 

Feature sets Density, Texture, Lung Biomechanical, ALL 

Feature selection algorithm Linear forward selection 

Classification algorithm K nearest neighbor , leave one out cross validation 

Table 6: Material and Methods for experiment 4.2.1 

 

Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.99 0.79
 

0.91 

Texture Based 0.98 0.71 0.88 

Lung Biomechanical 0.99 0.85 0.86 

ALL 0.99 0.87 0.92 

Table 7: Area under the ROC curve and correlation results from multiple regression   
analysis for each feature set and all the reported correlations are statistically 
significant with p < 0.0001 
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Feature Set Optimal Features 

Density based emphysema,  air trapping 

Texture based gaussian, gradient magnitude of Gaussian 

Lung biomechanical based jacobian, Strain, ADI 

Table 8: Optimal set of features selected for severe vs. normal classification where ADI 
represents anisotropic deformation index 

 

The following observations can be made from this experiment: 

1. There is a definite scope for the proposed lung biomechanical features in 

analyzing COPD. Inclusion of mechanical features to density and texture based 

features improved the overall performance of the system. 

2. Density based features have a high correlation of 0.91 with the FEV1/FVC, which 

is a clinical measure for the presence or absence of COPD. 

3. Lung biomechanical features have good correlations with both the PFT measures, 

in particular, it showed excellent correlation with the severity measure FEV1% 

predicted with a significance level of p < 0.001. 

4. There is a significant increase in the correlation with PFT measures when all the 

feature sets combined together. 
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4.2.2. Mild to Severe COPD VS. Non COPD  

(Whole Lung) 

 

As a next step, the performance of lung biomechanical feature set and the 

combination feature set (ALL) in detecting the presence or absence of COPD is tested. 

The results are compared with the density based and texture based features. The materials 

and methods followed in this experiment are shown in table 9.  The dataset is divided in 

to two classes for this experiment: nonsmokers, GOLD0 subjects as healthy cases and 

subjects from GOLD (1-4) stages are considered as diseased cases. A total of 90 subjects 

are used for this experiment considering 30 healthy and 60 diseased cases. ROC curves 

for normal and COPD subject classifications are shown in figure 11 and figure 12.  

 

 

 

Classification  COPD vs. Non COPD classification 

Dataset Non COPD, GOLD0, GOLD1, GOLD2, GOLD3, 

GOLD4  

Total number of subjects 90 (30 Normal vs. 60 Diseased)  

Feature sets Density, Texture, Lung Biomechanical and ALL 

Feature selection algorithm Linear forward selection 

Classification algorithm K nearest neighbor search,  leave one out cross validation 

Table 9: Dataset and algorithm information for experiment 4.2.2 
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Figure 11: ROC curves showing the performance of the feature set in classifying healthy 
subjects 

 

Figure 12: ROC curves showing the performance of the feature set in classifying COPD 
subjects 
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Density features were successful than the other feature sets in recognizing COPD. 

Density features achieved an AUC of 0.92 and correlated well with FEV1/FVC measure 

as shown in table 10. Textural and mechanical features achieved an AUC of 0.86 (table 

10). Textural features showed better correlation with FEV1/FVC measure whereas lung 

biomechanical features correlated well with FEV1%. When the feature sets combined 

together in ALL, there is a significant improvement in the classifier performance. Also, 

better correlations with the PFT measures are observed. 

 

 

 

Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.92 0.71
 

0.85 

Texture Based 0.86 0.66 0.77 

Lung Biomechanical 0.86 0.74 0.71 

ALL 0.92 0.82 0.85 

All the correlations showed a statistical significance of p < 0.0001 

Table 10: Area under the ROC curve for the whole lung COPD/Non-COPD classification 
and correlations with PFT measures from multiple regression analysis 

 

 

The optimal features of each feature set from the feature selection process are 

shown in table 11. Jacobian features are selected from the lung biomechanical feature set. 

Both emphysema and air trapping are shown to be effective in detecting COPD presence. 

Features calculated from gradient magnitude of the gaussian and the laplacian of gaussian 

filters are the selected texture based features. 
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Feature Set Optimal Features 

Density based emphysema,  air trapping 

Texture based gradient magnitude and laplacian of the Gaussian 

Lung biomechanical based Jacobian 

Table 11: Optimal set of features selected for COPD/Non-COPD classification. 

 

Although density based features showed better classification accuracy in the 

overall COPD/Non-COPD classification, the percentage of COPD subjects that are 

classified as normal subjects using density features is high. Lung biomechanical features 

have a comparatively less error percentage than the density and texture features. A graph 

showing the true positive rate against the false negative rate for each feature set in 

COPD/Non-COPD classification is shown in figure 13. Texture based and density based 

features have shown higher error rate in classifying diseased subjects. Textural features 

have more than 50% misclassification of COPD subjects. When lung biomechanical 

features added to texture and density features, the percentage of false negatives is 

significantly decreased.   

 

This experiment shows: 

1. The strength of density based features in finding the presence or absence of 

COPD. This feature set achieved an AUC of 0.92 and a high correlation of 0.85 

with FEV1/FVC diagnostic measure. 
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2. Lung biomechanical features, in particular Jacobian measure, achieved an AUC of 

0.86 in detecting COPD presence. Also, it showed good correlation of 0.73 with 

the severity measure FEV1% predicted. 

 

 

 

Figure 13: Graph showing the false negative rate in COPD/Non-COPD classification. 

 

 

3. When the density, texture and mechanical features combined together, it achieved 

an AUC of 0.92 with significant improvement of correlation with both the PFT 

measures. 

4. Lung biomechanical features and the combination of all the features showed less 

error percentage in classifying COPD cases.  
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4.2.3. Mild to Severe COPD VS. Non-COPD  

(Lobar Level) 

 

A two-class classification experiment is performed to detect COPD presence in 

lobes of the lung. Classification is performed using the features calculated from upper 

lobes and lower lobes separately. The disease label is assigned to a lobe from the label of 

the whole lung for training purposes. If the subject falls into a GOLD category, then all 

the lobes of the lung are assigned with same GOLD label. The dataset is divided into 30 

normal cases and 60 diseased cases. The classification is performed to check how well 

the proposed feature sets can classify lobes into a disease or a normal class. The three 

feature sets: density based, texture based and lung biomechanical based are extracted 

from upper lobes and lower lobes separately. The methods and materials used in this 

experiment are shown in table 12. The area under the curve results of classification are 

shown in table 13 and 14.  The ROC plots for lower lobe and upper lobe classification of 

COPD/Non-COPD are shown in figure 14, 15, 16 and 17. The optimal features selected 

from each feature set in the lobar classification are shown in table 15. 

Similar to the whole lung results, the combination feature set is the best of all 

feature sets in both upper lobe and lower lobe classification in detecting COPD presence. 

All the feature sets achieved better classification results in the lower lobe classification 

than the upper lobes. Density based features achieved an AUC of 0.92 at lower lobes by 

showing good correlation with the FEV1/FVC measure, shown in table 13. Lung 

biomechanical features achieved an AUC of 0.85 at lower lobes and correlated well with 

both the PFT measures.  All the feature sets have a poor correlation with FEV1% 

predicted in the upper lobe classification, shown in table 14. Texture based features 

performed well with an AUC of 0.86 at upper lobes. The classification accuracy is 
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significantly increased at upper lobes when all the features combined together. Also, the 

combination feature set showed better correlations with the PFT measures in the upper 

lobe classification. (Table 14) 

 

 

Classification  Lobar analysis (COPD/Non-COPD classification) 

Dataset Normal, GOLD0, GOLD1. GOLD2, GOLD3, GOLD4 

(15 subjects/case) divided into upper lobes, lower lobes  

Total number of subjects 90 (30 Normal/GOLD0 vs. 60 GOLD1-GOLD4) 

Feature sets Density, Texture-based, Lung Biomechanical, All 

Feature selection algorithm Linear forward selection 

Classification algorithm K nearest neighbor search, leave one out cross validation 

Table 12: Material and Methods for Experiment 4.2.3 

 

 

Figure 14: ROC curves showing the performance of the feature sets in classifying lower 
lobes of Non – COPD subjects 
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Figure 15: ROC curves showing the performance of the feature sets in classifying lower 
lobes of COPD subjects 

 

 

Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.92 0.61
 

0.72 

Texture Based 0.87 0.60 0.75 

Lung Biomechanical 0.85 0.74 0.77 

ALL 0.92 0.76 0.79 

All the reported correlations showed a statistical significance of p < 0.0001 

Table 13: Area under the ROC curve for the lower lobes and correlation results from 
multiple regression analysis for each feature set.  
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Figure 16: ROC curves showing the performance of the feature set in classifying upper 
lobes of non-COPD subjects 

 

 

Figure 17: ROC curves showing the performance of the feature set in classifying upper 
lobes of COPD subjects 
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Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.83 0.59
 

0.72 

Texture Based 0.86 0.59 0.71 

Lung Biomechanical 0.81 0.56 0.61 

ALL 0.88 0.65 0.74 

All the correlations showed a statistical significance of p < 0.0001 

Table 14: Area under the ROC curve for the upper lobes and correlation results from 
multiple regression analysis for each feature set.  

 

 

Feature Set Upper lobes Lower lobes 

Density based air trapping air trapping 

Texture based gaussian, gradient magnitude, 

and laplacian of the gaussian 

gaussian, gradient magnitude, 

and laplacian of the gaussian 

biomechanical 

based 

jacobian, strain jacobian, strain, and ADI 

Table 15: Optimal set of features selected for lobar level COPD/Non-COPD 
classification.  
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The following observations can be made from this experiment: 

1. The higher classification accuracies at the lower lobes demonstrating the 

greater influence of airflow obstruction than at the upper lobes. 

2. The better correlations of lung biomechanical features with the pulmonary 

function measures at lower lobes indicate more lung functional changes 

happening in this region. 

3. Inclusion of lung biomechanical features to the density and textural 

features increase the classification accuracy in classifying upper lobes and 

lower lobes. 

4. The combination feature set, ALL achieved better correlations with PFT 

measures from both upper lobe and lower lobe features. 

 

4.2.4. GOLD Category Classification 

(Whole Lung Level) 

 

As a final step in the whole lung analysis, classification of COPD subjects into 

their corresponding GOLD severity stage based on the CT derived features is done. The 

dataset for this experiment comprises of 75 subjects with 15 subjects from each severity 

stage. It is a five class classification experiment given the GOLD severity range from 0 to 

4. The materials and methods followed in this experiment are shown in table 16.  ROC 

curves for each feature set performance at the five severity stages are plotted separately in 

figures 18, 19, 20, 21 and 22.  Classification and correlation results are shown in table 17. 

The optimal features selected in the feature selection are shown in table 18. Air trapping 

measure is selected for severity classification from density based features. Features from 

all the three mechanical measures are selected from lung biomechanical feature set.   
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Lung biomechanical features are more effective in COPD severity assessment 

than the density and texture based features. Lung biomechanical features achieved an 

AUC of 0.80 and also correlated well with the FEV1% predicted measure (Table 17). 

Density based features are shown to be highly correlated with the FEV1/FVC measure. 

The combination feature set, ALL is the best of all feature sets by achieving a significant 

AUC of 0.86, shown in table 17. Also, there is a better correlation with the PFT measures 

with the ALL feature set.  

 

 

 

Classification  GOLD category classification 

Dataset GOLD0, GOLD1. GOLD2, GOLD3, GOLD4 

Total number of subjects 75 (15 subjects/class) 

Feature sets Density-based, Texture-based, Lung Biomechanical, 

ALL (best feature subset)  

Feature selection algorithm Linear forward selection 

Classification algorithm K nearest neighbor , leave one out fold cross validation 

Table 16: Material and Methods for Experiment 4.2.4. 
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Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.78 0.69
 

0.83 

Texture Based 0.77 0.63 0.72 

Lung Biomechanical 0.80 0.72 0.66 

ALL 0.86 0.84 0.84 

All the correlations showed a statistical significance of p < 0.0001 

Table 17: Area under the ROC curve and correlation results from multiple regression   
analysis for each feature set. 

 

 

Figure 18: ROC curves showing the performance of the feature sets in classifying 
GOLD0 COPD subjects 
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Figure 19: ROC curves showing the performance of the feature sets in classifying 
GOLD1 COPD subjects 

 

 

Figure 20: ROC curves showing the performance of the feature sets in classifying 
GOLD0 COPD subjects 
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Figure 21: ROC curves showing the performance of the feature sets in classifying 
GOLD3 COPD subjects 

 

 

Figure 22: ROC curves showing the performance of the feature sets in classifying 
GOLD4 subjects. 
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Feature Set Optimal Features 

Density based air trapping 

Texture based gaussian, gradient magnitude and laplacian of the gaussian 

Lung biomechanical based jacobian, Strain, ADI 

 

Table 18: Optimal features selected for GOLD severity classification. 

 

Lung biomechanical features have a higher rate of classification at the later stages 

of the disease than at the initial stages. In particular, at GOLD2 stage, density features 

and texture features failed to perform (figure 20). The confusion matrix of density, 

texture and mechanical feature sets in GOLD category classification is shown in table 19, 

20 and 21. 

 

 

 GOLD0 GOLD1 GOLD2 GOLD3 GOLD4 

GOLD0 11 4 0 0 0 

GOLD1 5 4 3 3 0 

GOLD2 6 7 0 2 0 

GOLD3 1 1 0 9 4 

GOLD4 0 0 0 7 8 

Table 19: Confusion matrix of density based feature set from the GOLD category 
classification of whole lung.  
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 GOLD0 GOLD1 GOLD2 GOLD3 GOLD4 

GOLD0 8 2 3 1 0 

GOLD1 2 10 3 0 0 

GOLD2 4 7 1 3 0 

GOLD3 1 2 1 11 0 

GOLD4 0 0 0  6 9 

Table 20: Confusion matrix of texture based feature set from the GOLD category 
classification of whole lung.  

 

 

 

 GOLD0 GOLD1 GOLD2 GOLD3 GOLD4 

GOLD0 11 4 0 0 0 

GOLD1 11 2 1 1 0 

GOLD2 3 1 9 1 1 

GOLD3 0 1 2 9 3 

GOLD4 0 1 0 5 9 

 

Table 21: Confusion matrix of lung biomechanical feature set from the GOLD category 
classification of whole lung.  
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Figure 23: Chart showing the percentage of correctly classified instances at initial stages 
of the disease versus later stages of the disease. G0-G1 represents 
classification of GOLD0, GOLD1 subjects and G2-G4 for GOLD2, GOLD3, 
and GOLD4. 

 

Density and texture based features together classified one GOLD2 subject 

correctly whereas 9 out of 15 GOLD2 subjects are identified by the lung biomechanical 

features, shown in table 19, 20 and 21. Density and texture based features have a better 

classification results at GOLD0 and GOLD1 stage. Lung biomechanical features showed 

difficulties in classifying GOLD1 stage subjects as most of them classified as GOLD0 

stage. This suggests a possible onset of major mechanical changes in COPD subjects at 

GOLD2 stage. The classification accuracies of the three feature sets at the initial stages 

and later stages are shown in figure 23. Lung biomechanical features achieved higher 

accuracies from GOLD2 to GOLD4 stage where as texture based features have high 

classification rates at the initial stages.  
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This experiment shows: 

1. The significant performance of the combination feature set with an AUC of 0.86 

than the individual feature sets in the GOLD category classification. 

2. Lung biomechanical feature performance with an AUC of 0.8, which is higher 

than the density based and texture based features. It also showed good correlation 

with FEV1% predicted measure. 

3. Lung biomechanical feature classification accuracy is significantly higher at 

GOLD2 stage than the density and texture based features. 

4. Density and texture based features higher correlations with FEV1/FVC whereas 

lung biomechanical features have a good correlation with FEV1% predicted. 

5. Lung biomechanical features have higher classification accuracy at the later 

stages of the disease starting at GOLD2, which shows the onset of mechanical 

changes at that particular stage. 

4.2.5. GOLD Category Classification (Lobar Level) 

 

The progression of COPD at a regional level is estimated in this classification 

experiment. GOLD severity classification is done for upper lobes and lower lobes. The 

severity labels for lobes are assigned from the global label of the lung. The materials and 

methods used in this experiment are shown in table 22. AUC results for the classification 

of upper lobes and lower lobes are shown in table 23 and table 24.  

Lung biomechanical features showed better classification results in assessing 

severity stage of the lobes. Higher classification accuracies and better correlations 

observed at the lower lobe classification than at the upper lobes. The combination feature 

set, ALL is the best of all with significant AUC of 0.75 and 0.84 at upper lobes and lower 

lobes. Also, there is a significant increase in the correlation with the PFT measures when 

all the feature sets combined. Lung biomechanical features showed better correlations 
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with the PFT measures at the lower lobes. Density based and texture based features have 

better correlation with FEV1/FVC than the FEV1 % predicted measure.  

 

 

 

Classification  Lobar analysis (GOLD category  classification) 

Dataset GOLD0, GOLD1. GOLD2, GOLD3, GOLD4 divided 

into upper lobes, lower lobes and the right middle lobe 

Total number of subjects 75(15 subjects/class) 

Feature sets Density, Texture-based, Lung Biomechanical, All 

Feature selection algorithm Linear forward selection 

Classification algorithm K nearest neighbor, leave one out cross validation 

 

Table 22: Material and Methods for Experiment 4.2.5 

 

Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.69 0.59
 

0.66 

Texture Based 0.72 0.58 0.69 

Lung Biomechanical 0.74 0.55 0.57 

ALL 0.75 0.62 0.70 

All the correlations showed a statistical significance of p < 0.0001 

Table 23: Area under the ROC curve for the upper lobes and correlation results from 
multiple regression analysis for each feature set.  
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Feature sets AUC Correlation 

FEV1% 

Correlation 

FEV1/FVC 

Density Based 0.75 0.59
 

0.69 

Texture Based 0.73 0.57 0.70 

Lung Biomechanical 0.76 0.75 0.75 

ALL 0.84 0.77 0.79 

 

All the correlations showed a statistical significance of p < 0.0001 
 
Table 24: Area under the ROC curve for the lower lobes and correlation results from 

multiple regression analysis for each feature set. 
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CHAPTER 5 

DISCUSSION 

 

 The conducted experiments in this study shows that the estimates of regional 

lung tissue expansion and contraction can be used to recognize COPD in pulmonary CT 

scans using supervised machine learning techniques. Density based features has been 

previously shown to be effective in COPD diagnosis
3, 7-9, 22, 23, 29, 53

. It also has been 

previously demonstrated that the textural patterns on CT images are useful in COPD 

classification
13-16, 33, 34

. In this study, the proposed lung biomechanical features are tested 

against these existing features for the classification of COPD. It is shown that the 

inclusion of mechanical features to the existing density based and texture based feature 

improves the detection of COPD presence and severity to a significant extent.  

As an initial step in validating our proposed features, correlation of these features 

with the clinical pulmonary function test measures is checked. It is clear that all the lung 

biomechanical features are correlated to a good degree with the PFT measures. The 

jacobian measure showed excellent correlations of 0.83 and 0.84 with FEV1/FVC, 

FEV1% predicted values. However, jacobian measures comes after air trapping measure 

(percent -856) of the density based features, which showed high correlations of 0.83 and 

0.91 with FEV1/FVC, FEV1% predicted values. All the correlation coefficients of the 

lung biomechanical features are found to be significant using t-tests with significance 

level p < 0.0001. This correlation with the PFT measures suggests a definite relationship 

between mechanical features and pulmonary function. 

As a first classification experiment, a two-class problem was defined by the two 

subject groups, healthy (No COPD) and COPD (mild to severe) to estimate the 

performance of lung biomechanical features in recognizing COPD. The results of the 

classification are shown in table 10. The obtained lung biomechanical features compare 

well to previous methods in discriminating subjects with and without COPD, by 



www.manaraa.com

62 
 

 

6
2
 

achieving an AUC of 0.86. Also, there is a good correlation of mechanical features with 

FEV1% predicted values whereas density and textural features correlates best with 

FEV1/FVC values. This suggests the sensitivity of mechanical features to the level of 

severity of the COPD, which is determined by FEV1% predicted measure. When the 

proposed features combined with density and textural features, there is a significant 

increase in the classification accuracy and also in the correlation with FEV1% predicted. 

Also, density based features achieved a better AUC of 0.92 in this experiment and 

showed good correlation of 0.85 with the FEV1/FVC and 0.71 with FEV1% predicted 

values. Despite of this good classification accuracy, density and textural features showed 

high misclassifications of COPD subjects as normal. On the other hand, lung 

biomechanical features have less misclassification rate resulting in overall rise of the 

classifier performance when all the feature sets combined together. This suggests that the 

mechanical features add important value in detecting COPD presence.  

To assess COPD presence at a regional level, the same two-class problem was 

defined using the features calculated from upper lobes and lower lobes. We estimated the 

performance of proposed features in detecting COPD presence at the lobar level.  The 

results from table 13 and 14 shows that all the features sets performed better at lower 

lobes than at upper lobes. Lung biomechanical features showed high correlations with 

PFT measures at lower lobes, showing its sensitivity to disease presence. Also, there is a 

significant improvement in the classification accuracy at upper lobes when all the 

features combined together. The combinations of features are observed to be more 

effective than the individual set of features in assessing COPD presence in upper lobes of 

the lung. Similarly, the combination resulted in better classification results at lower lobes. 

In these experiments at whole lung and lobar level, ten different mechanical features were 

selected for the classification. The jacobian measures are selected in both the whole lung 

and lobar classification whereas strain and ADI measures were selected for only lobar 

classification. This wide selection of different mechanical features shows the influence of 
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lung tissue deformational changes in regional assessment of COPD using pulmonary CT 

scans. 

A five class problem was defined to categorize COPD subjects into their 

corresponding GOLD severity using the proposed mechanical features. Fifteen subjects 

from each GOLD severity were used. Lung biomechanical features are more effective 

than the density and texture based features in severity classification of COPD and 

correlated best with the severity measure, FEV1% predicted values. Also, the inclusion of 

mechanical features to density and texture features resulted in a significant classification 

of COPD severity showing good correlations with the PFT measures. This shows the 

sensitivity of mechanical features to the COPD severity. One interesting observation from 

the severity classification results is the poor performance of density and texture features 

at GOLD2 stage of the disease. On the other hand, lung biomechanical features were able 

to classify nine out of 15 GOLD2 subjects compared to one subject with both density and 

texture combined. This suggests the possibility of major lung functional changes at 

GOLD2 stage, which were captured by lung biomechanical features. However, 

mechanical features were not able to differentiate GOLD0 and GOLD1 subjects. This is a 

possible indication of less mechanical changes in the lungs at initial stages of the disease. 

On the other hand, textural features were able to distinguish subjects better at the initial 

stages. These observations lead to a better classification accuracy at all stages of COPD 

when both textural and mechanical features combined together. The lobe by lobe analysis 

of COPD severity shows the higher classification accuracies at lower lobe. Lung 

biomechanical features achieved better AUC than the density and textural features and 

also significantly correlated with PFT measures. All the features calculated at upper lobes 

were poorly correlated with the PFT measures. With the combination of all the features, 

there is a significant increase in the classifier performance at both whole lung and lobar 

level severity classification. Also, the combination of features showed better correlations 

with the PFT measures. These results highlight the importance of adding mechanical 
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features to existing features for more accurate assessment of COPD severity. It is also 

important that these features can be measured at regional level of the lung, as opposed to 

PFT diagnosis based on whole lung function.  

From the COPD/Non-COPD classification at both whole lung and lobar level, it 

must be noted, density and texture based features performed reasonably better than the 

lung biomechanical features. In particular, air trapping measure is proved to be a 

significant measure in detecting COPD presence. Since, the subject range in this 

classification is from GOLD1 to GOLD4 (mild to severe); there is a possibility of less 

lung functional changes happening at the initial stages. This leads to a higher number of 

misclassifications of GOLD1 as normal with lung biomechanical features, resulting in 

overall reduction of the classifier performance. However, in the classification of normal 

and severe COPD, the classification accuracy is same as density based and texture based 

features. This also suggests the effective performance of mechanical features at later 

stages of the disease. In addition to the density and texture based features that were used 

in this study, there are several other CT derived features which can be useful in more 

robust quantification of COPD. The number of features used in this study is less. There is 

a definite scope in testing the effectiveness of several other features either individually or 

in combination with the proposed features. The texture based feature set consists of three 

basic gaussian filtered versions of the image at multiple scales. There are other textural 

features which have been proven to be effective in COPD quantification
13-16

. Some of 

them are entropy, grey level non uniformities, co-occurrence matrices, run length 

matrices and other gaussian derivative filters.  A complete system consisting of all the CT 

derived features related to both emphysema and small airway disease may result in more 

accurate measures of COPD. 

 

 The proposed features performed comparatively well with the previous methods 

of COPD diagnosis and severity classifications. The adaptive multiple feature method 
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(AMFM), proposed by Uppaluri et al., based on textural patterns of 2D CT images 

achieved an accuracy of 100% in classifying normal and severe emphysema subjects but 

with no significant correlation with PFT measures of emphysema
15

. The extension of 2D 

AMFM to 3D AMFM proposed by Xu et al. showed better results in discriminating 

normal smoker and nonsmoker lung parenchyma
16

.  The combination feature set, ALL, 

also achieved significant classification rate at early stage discrimination of subjects. 

Another texture based approach proposed by Sorensen et al. based on gaussian filter 

versions of CT, achieved an AUC of 0.713 in classifying COPD and Non-COPD 

subjects
13

. The combination of registration based features with the density based features, 

proposed by Murphy et al. achieved an AUC of 0.92 in COPD diagnosis
27

. Recently, the 

combination of tracheal morphologic changes and emphysema features achieved an 

accuracy of 80% in GOLD0 versus GOLD1-4 classification
20

. In COPD diagnosis 

experiments, the combination feature set, ALL, achieved an AUC of 0.99 in normal 

versus severe COPD classification, an AUC of 0.92 in mild to severe COPD versus non-

COPD classification showing significant correlations with PFT measures. In COPD 

severity classification, registration based ventilation measures proposed by Murphy et al. 

achieved 67% classification accuracy. The combination of tracheal changes with 

emphysema features achieved 51% accuracy
18, 20

. The proposed feature set, ALL, 

achieved an AUC of 0.86 in classifying COPD severity showing a significant correlation 

of 0.84 with both the PFT measures.  

Accurate severity classification of COPD is difficult, due to many drawbacks 

associated with the PFT diagnosis, which is the sole measurement of severity. The major 

drawback is its reproducibility, which relies on the subject’s ability to follow the given 

instructions on the day of diagnosis. A small error during the test may result in assigning 

different severity for the subject. There is a need to find the correlations of the proposed 

features with the diagnostic measures other than PFT. Some of them are St. George’s 

Respiratory Questionnaire (SGRQ), modified Medical Research Council questionnaire 
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(mMRC), bode index of the subject, other measures of lung volumes and so on. Also, the 

size of the data used in this experiment is small (90 subjects) to conclusively state the 

results of this experiment. In the future, a larger number of subjects will be investigated.  

COPD is a heterogeneous disease characterized by two components: chronic 

bronchitis and emphysema
1
. There are many other independent predictors of the disease 

and that COPD cannot be defined by a single measure. This results in different phenotype 

characteristics in subjects with COPD
54-56

. The identification of COPD phenotypes 

appears as one of the current major challenges in subjects with COPD. Many statistical 

methods have been proposed to examine phenotypic heterogeneity of COPD
55, 56

. 

Clustering analysis is a statistical method which transforms heterogeneous groups of 

variables into relatively homogenous groups with the use of advanced machine learning 

capabilities. In the future, we will use this cluster analysis on the larger dataset to test the 

hypothesis that the lung biomechanical features with other CT derived features could lead 

to grouping of COPD subjects according to phenotypic characteristics. 
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CHAPTER 6 

CONCLUSION 

 

This study demonstrates the effectiveness of the registration based estimates of 

lung tissue expansion and contraction in recognizing COPD and its severity. Three 

measures were extracted from the registered scans and the features based on these three 

measures showed good correlations with the pulmonary function. All the experiments 

illustrated that the classification is improved at both COPD/Non-COPD and severity 

stage classification with the inclusion of proposed lung biomechanical features to the 

existing density and texture based features. With further testing on larger databases, the 

proposed approach may be used for accurate measure of the pulmonary function and 

disease. 
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APPENDIX 

The demographic information of all the subjects used in this study collected from 

COPDGene database.  

 

 

 

COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

18666W 61 F 25 0.88 1.16 Normal 

18747W 60 F 26 0.78 0.92 Normal 

18749A 76 F 41.7 0.82 0.85 Normal 

18757Z 71 F 28.5 0.77 1.01 Normal 

18765Y 70 M 25.8 0.87 1.20 Normal 

18825Q 76 F 29.1 0.87 1.39 Normal    

19020F 58 F 24.3 0.72 1.00 Normal 

18826S 74 M 25.3 0.86 1.13 Normal 

18763U 72 M 26.4 0.81 1.25 Normal 

18734N 74 F 30.5 0.8 0.82 Normal 

18782Y 65 M 28.1 0.84 0.91 Normal 

18810D 79 F 35.2 0.84 0.96 Normal 

 

Table A1: Demographic and spirometry information per subject (Continued) 



www.manaraa.com

69 
 

 

6
9
 

COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

18977N 71 M 28.7 0.74 0.87 Normal 

10233D 61 M 27.4 0.72 0.95 GOLD0 

10223A 67 M 32 0.79 0.89 GOLD0 

10263M 61 F 27.7 0.76 1.00 GOLD0 

10252H 63 F 31.2 0.79 1.07 GOLD0 

10396F 67 M 23 0.72 0.90 GOLD0 

10265Q 66 F 27.2 0.78 0.90 GOLD0 

10443O 55 M 34.8 0.84 0.90 GOLD0 

10101M 61 F 24.2 0.74 0.93 GOLD0 

10123W 58 M 26.8 0.8 0.92 GOLD0 

10124Y 65 M 31.8 0.8 0.9 GOLD0 

10127E 61 F 22.6 0.83 0.91 GOLD0 

10151B 76 M 25 0.76 0.92 GOLD0 

10153F 66 M 29.4 0.74 0.91 GOLD0 

10155J 64 F 27 0.7 0.95 GOLD0 

10189A 80 M 29.3 0.71 0.96 GOLD0 

10305C 76 M 23.7 0.56 0.93 GOLD1 

Table A1 continued 
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COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

10736D 78 F 39.9 0.56 0.81 GOLD1 

10921Y 63 M 24.9 0.6 0.88 GOLD1 

11506R 69 F 23.1 0.55 0.91 GOLD1 

11113Y 70 F 22 0.65 1.05 GOLD1 

11558K 68 F 22.9 0.58 0.80 GOLD1 

11570A 77 F 22.5 0.66 1.04 GOLD1 

10312Z 68 F 21.9 0.64 0.98 GOLD1 

10313B 71 M 30.1 0.63 0.90 GOLD1 

10569K 69 M 27.8 0.66 1.12 GOLD1 

10598R 64 M 23.7 0.65 0.82 GOLD1 

10603K 65 F 22.1 0.59 0.91 GOLD1 

10307G 67 F 20.2 0.53 0.81 GOLD1 

10190L 78 F 29.1 0.47 0.86 GOLD1 

10253J 73 M 28.1 0.66 0.94 GOLD1 

10192P 63 F 32.5 0.69 0.65 GOLD2 

10457Z 68 F 26.3 0.68 0.74 GOLD2 

10601G 65 M 40.5 0.66 0.71 GOLD2 

Table A1 continued 
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COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

10624S 70 M 31.8 0.48 0.61 GOLD2 

10691H 69 M 23.3 0.63 0.78 GOLD2 

10641S 76 M 24.1 0.57 0.65 GOLD2 

10704Q 69 F 22.7 0.65 0.61 GOLD2 

10125A 63 M 33.3 0.63 0.65 GOLD2 

10126C 72 F 26.9 0.53 0.74 GOLD2 

10130T 64 F 32.4 0.57 0.77 GOLD2 

10141Y 65 F 28.7 0.51 0.56 GOLD2 

10160C 68 M 20.6 0.55 0.54 GOLD2 

10164K 65 F 40.8 0.66 0.62 GOLD2 

10179X 70 F 32.5 0.59 0.59 GOLD2 

10205Y 62 F 25.7 0.6 0.69 GOLD2 

11875W 70 M 25.4 0.36 0.33 GOLD3 

12001S 62 M 31 0.33 0.41 GOLD3 

12250N 68 F 19 0.35 0.30 GOLD3 

12608E 64 M 27.4 0.39 0.35 GOLD3 

13042L 76 M 30.3 0.32 0.45 GOLD3 

Table A1 continued 
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COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

13059C 56 F 42.8 0.64 0.43 GOLD3 

13145V 73 M 33 0.45 0.49 GOLD3 

10719D 72 M 30.3 0.41 0.42 GOLD3 

11201V 72 M 27.8 0.31 0.39 GOLD3 

11703T 76 M 31.6 0.39 0.39 GOLD3 

11750C 71 F 25.8 0.52 0.40 GOLD3 

11754K 64 F 34.8 0.26 0.31 GOLD3 

10503G 75 M 27.2 0.33 0.33 GOLD3 

10708Y 69 M 28.1 0.4 0.44 GOLD3 

10571X 68 F 27 0.36 0.40 GOLD3 

14192J 63 F 20.1 0.17 0.12 GOLD4 

16104W 64 M 21.3 0.26 0.10 GOLD4 

15690E 64 F 25.9 0.3 0.28 GOLD4 

15284T 45 F 20.6 0.28 0.22 GOLD4 

17173U 61 M 33.5 0.33 0.24 GOLD4 

16294B 68 M 46.1 0.39 0.24 GOLD4 

21700T 62 M 25.5 0.22 0.24 GOLD4 

Table A1 continued 
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COPDGENE  

UIA #ID 

AGE GENDER BMI FEV1/FVC FEV1% 

PRED 

GOLD 

STAGE 

13344B 69 F 25.7 0.35 0.22 GOLD4 

13383L 63 F 25.7 0.31 0.22 GOLD4 

14197T 70 M 39.2 0.24 0.28 GOLD4 

14538T 71 M 27.4 0.25 0.23 GOLD4 

14880F 67 M 33.7 0.24 0.28 GOLD4 

24383W 67 F 15.4 0.35 0.29 GOLD4 

15861F 55 F 26 0.32 0.26 GOLD4 

15811Q 71 M 28.4 0.23 0.23 GOLD4 

Table A1 continued 
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